Bombsight

A bombsight is a device used by bomber aircraft to accurately drop bombs. In order to do this, the bombsight has to estimate the path the bomb will take after release from the aircraft. The two primary forces during its fall are gravity and air drag, which makes the path of the bomb through the air is roughly parabolic. However, there are additional factors such as changes in air density and wind that may be considered, but these forces take some time to build up to a measurable effect, and are only a concern for bombs that spend a significant portion of a minute falling through the air. These effects can be minimized by reducing the fall time though low-level bombing or by increasing the speed of the bombs, both of which are combined in the dive bomber. However, this also increases the danger to the bomber from ground-based defences, and accurate bombing from higher altitudes has always been desired. This has led to a series of increasingly sophisticated bombsight designs dedicated to high-altitude level bombing.

Since their first application prior to the First World War, bombsights have gone though several major revisions. The earliest systems were iron sights that were pre-set to an estimated fall angle. In some cases these consisted of nothing more than a series of nails hammered into a convenient spar, lines drawn on the aircraft, or alignments of certain parts of the structure. These were replaced by the earliest custom-designed systems, normally iron sights that could be set based on the aircraft's airspeed and altitude. These early systems were replaced by the vector bombsights, which added the ability to measure and adjust for winds. Vector bombsights were useful for altitudes up to about 3,000 m and speeds up to about 300 km/h. Starting in the 1930s, mechanical computers with the performance needed to "solve" the equations of motion were incorporated into the new tachometric bombsights, the most famous being the Norden. In the postwar era, tachometric bombsights were often combined with radar systems to allow accurate bombing through clouds or at night. When studies demonstrated that bomb accuracy was roughly equal in these two systems, optical bombsights were generally removed and the role passed to dedicated radar bombsights. Finally, especially from the 1960s on, fully computerized bombsights were introduced, which combined the bombing calculations with navigation and mapping.

Modern aircraft do not have a bombsight, per se, featuring highly computerized systems that combine bombing, gunnery, missile fire and navigation into a single heads up display. These systems have the performance to calculate the bomb trajectory in real time as the aircraft manoeuvres, and add the ability to adjust for weather, relative altitude, relative speeds for moving targets, and climb or dive angle. This makes them useful for both level bombing, as in earlier generations, as well as tactical missions formerly bombed by eye.

Contents

Bombsight concepts

Forces on a bomb

It is a basic outcome of Newtonian mechanics that vertical and horizontal motion of a bomb can be considered separately. This makes understanding the motion of a bomb through the air much simpler. There are some effects that operate along the changing path of the bomb, but they are relatively minor and can be considered separately for a basic study.

To start with, consider only the vertical motion of a bomb. The bomb will be subject to two primary forces, gravity and drag, the first constant, and the second varying with the square of velocity. In the first instant the vertical motion is zero for an aircraft flying straight and level. In this case, the drag is zero, and the bomb accelerates downward due to gravity. As it falls the force of gravity remains constant, but as this leads to an increasing velocity, the drag force rapidly increases as well. At some point the force of drag will become equal to the force of gravity, and the bomb will reach terminal velocity. As the air drag will also vary with air density, and thus altitude, the terminal velocity will vary as the bomb falls. Generally the bomb will slow as it reaches lower altitudes where the air is denser, but the relationship is complex.[1]

Now consider the horizontal motion. At the instant it leaves the shackles, the bomb carries the forward speed of the aircraft with it. This motion is countered by drag, which slows it down. Drag is at its greatest when the bomb first leaves the aircraft, and as it rapidly slows. As the forward motion slows, the drag force drops and the rate of slowing diminishes. The forward speed is never entirely bled off. If the bomb was not subject to drag its path would be purely ballistic and it would impact at an easily calculable point, the "vacuum range". In practice, the impact point is short of the vacuum range, and this real-world distance is known simply as the "range". The difference between the vacuum range and actual range is known as the "trail". The trail and range differ for different bombs due to their individual aerodynamics, and typically have to be measured on a bombing range.[1]

The main complexity in completely separating the motion into vertical and horizontal is the terminal velocity. Bombs are designed to fly "nose forward", typically through the use of fins at the back of the bomb. It is the wind acting on the nose that causes drag, so the velocity that defines this is a factor of the angle of the bomb at any given instant. If the bomb is released at low speeds from the aircraft it will quickly turn vertical and the velocity will be defined largely by how long the bomb has been falling. However, if it is released at high speed it may already be close to terminal velocity, and can only accelerate vertically after bleeding off some of its horizontal speed. Reaching terminal velocity tends to "flatten" the trajectory, keeping the bomb in the air longer, and thereby allowing the horizontal speed to act over a longer time, extending the range.

Finally, consider the effects of wind. Wind acts on the bomb through drag, and is thus a function of the wind speed. This is typically a fraction of the speed of the bomber or the terminal velocity, so it only becomes a factor at high altitudes where this small force has enough time to build up to a measurable value. However, as the bomber itself is also effected by the wind, the bomb will leave the aircraft with both the forward airspeed of the bomber, as well as any additional motion due to the wind. Even if the wind drops to zero immediately below the aircraft, this initial speed will be carried by the bomb during its fall. As the wind rarely does drop to zero in this fashion, in practice the effects of wind will continue to grow though the bomb's flight. The difference between the impact point and where it would have fallen if there had been no wind is known as "drift", or "cross trail".[1][2]

The "bombsight problem"

In ballistics terms, it is traditional to talk of the calculation of aiming of ordinance as the "solution". The "bombsight problem" is the calculation of the location in space where the bombs should be dropped in order to hit the target given all of the effects noted above.[2] Bombsights need to produce the solution to this problem.

In the absence of wind, the bombsight problem is fairly simple. The impact point is a function of three factors, the aircraft's altitude, its forward speed, and the terminal velocity of the bomb. In many early bombsights, these two inputs were adjusted by separately setting the front and back sights of an iron sight, one for the altitude and the other for the speed. Terminal velocity, which extends the fall time, can be accounted for by raising the effective altitude by an amount that is based on the bomb's ballistics.[3]

When windage is accounted for the calculations become more complex. As the wind can operate in any direction, bombsights generally re-calculate the windage by converting it into the portions that act along the flight path, and across it. If the aircraft will carry some residual sideways speed over the drop point, this too has to be added to the sideways component. In practice, it was generally simpler to have the aircraft fly in such a way to zero out any sideways motion and eliminate this factor.[4]

Bombsights are sighting devices that are pointed in a particular direction, or "aimed". Although the solution outlined above theoretically returns a point in space, simple trigonometry can be used to convert this point into an angle relative to the ground. The drop point is indicated when the target appears at that relative angle to the aircraft. The distance between the aircraft and target at that moment is the "range", so this angle is often referred to as the "range angle", although "dropping angle", "aiming angle", "bombing angle" and similar terms are often used as well. In practice, some or all of these calculations are carried out using angles and not points in space, skipping the final conversion.[3]

Accuracy

The accuracy of the drop is effected both by inherent problems like the randomness of the atmosphere, as well as more practical problems like how close to flat and level the aircraft is flying or the accuracy of its instruments. This inaccuracies compound over time, so increasing the altitude of the bomb run, and thus increasing the fall time, has a significant impact on the final accuracy of the drop.

For this reason, it is useful to consider a single example of a typical bomb being dropped on a typical mission. In this case we will consider the AN-M65 500 lbs General Purpose Bomb, widely used by the USAAF and RAF during WWII, and with direct counterparts in the armoires of most forces involved. It will be dropped from a Boeing B-17 flying at 200 mph at an altitude of 20,000 feet in a 25 mph wind. Data on this bomb can be found in "Terminal Ballistic Data, Volume 1: Bombing".[5] Given these conditions, the M64 would travel approximately 6,500 feet forward before impact,[6] for a trail of about 1000 feet from the vacuum range,[7] and impact with a velocity of 1150 fps at an angle of about 77 degrees from horizontal.[8] A 25 mph wind would be expected to move the bomb about 300 feet during that time.[9] The time to fall is about 37 seconds.[10] Against men standing in the open, the 500 lbs has a lethal radius of about 350 feet,[11] but much less than that against buildings, perhaps 90 feet.[12]

Assuming errors of 5% in every major measurement, we can estimate those effects on accuracy based on the methodology and tables in the guide.[5] A 5% error in altitude at 20,000 feet would be 1,000 feet, so the aircraft might be anywhere from 19 to 21,000 feet. According to the table, this would result in an error around 10 to 15 feet. A 5% error in airspeed, 10 mph, would likewise cause an error of about 15 to 20 feet. In terms of drop timing, errors of 5% are likely far too low for manual release, where times on the order of 1/10th of a second are reasonable. In this case the error is simply the ground speed of the aircraft over this time, or about 30 feet. All of these are well within the lethal radius of the bomb.

The wind effects the accuracy of the bomb in two ways, pushing directly on the bomb while it falls, as well as changing the ground speed of the aircraft before the drop. In the case of the direct effects on the bomb, a measurement that has a 5% error, 1.25 mph, that would cause a 5% error in the drift, which would be 17.5 feet. However, that 1.25 mph error, or 1.8 fps, would also be added to the aircraft's velocity. Over the time of the fall, 37 seconds, that would result in an error of 68 feet, which is at the outside limit of the bomb's performance. Wind speed is generally measured using a dead reckoning procedure that compares measured movement over the ground with the calculated movement using the aircraft instruments. The Federal Aviation Administration's FAR Part 63 suggests 5 to 10% accuracy of these calculations,[13] the US Air Force's AFM 51-40 gives 10%,[14] and the US Navy's H.O. 216 at a fixed 20 miles or greater.[15] Compounding this inaccuracy is the fact that it is made using the instrument's airspeed indication, and as the airspeed in this example is about 10 times that of the wind speed, its 5% error can led to great inaccuracies in wind speed calculations. Eliminating this error through the direct measurement of ground speed (instead of calculating it) was a major advance in the "tachometric" bombsights of the 1930s and 40s.

Finally, consider errors of the same 5% in the equipment itself, that is, an error of 5% in the setting of the range angle, or a similar 5% error in the levelling of the aircraft or bombsight. For simplicity, consider that 5% to be a 5 degree angle. Using simple trigonometry, 5 degrees at 20,000 feet is approximately 1,750 feet, an error that would place the bombs well outside their lethal radius. In tests, accuracies of 3 to 4 degrees were considered standard, and angles as high as 15 degrees were not uncommon.[10] Even the smaller errors would produce misses of 1000 feet, still well outside the lethal radius. This was one of the major reasons that "stabilization" equipment was added, which automatically levelled the bombsight to help eliminate this error. However, pilots were generally unable to correct quickly enough to match this accuracy, which led to the introduction of autopilots as standard equipment.

Early systems

All of the calculations needed to predict the path of a bomb can be carried out by hand, with the aid of calculated tables of the bomb ballistics. However, the time to carry out these calculations is not trivial. Using visual sighting, the range at which the target is first sighted remains fixed, based on eyesight, so as aircraft speeds increase, there is less time available to carry out the calculations and correct the aircraft path. During the early stages of bombsight development, the issue was always reducing the allowable engagement envelop to reduce the need to calculate marginal effects. For instance, when dropped from very low altitudes, the effects of drag and wind during the fall will be so small that they can be ignored. In this case only the forward speed and altitude have any measurable effect.[16]

One of the earliest recorded examples of a true bombsight was built in 1911 by Lieutenant Riley E. Scott, of the U.S. Army Coast Artillery Corps. This was a simple device with inputs for airspeed and altitude which was hand-held while lying prone on the wing of the aircraft. After considerable testing, he was able to build a table of settings to use with these inputs. In testing at College Park, Maryland, Scott was able to place two 18 pound bombs within 10 feet of a 4-by-5 foot target from a height of 400 feet. In January 1912, Scott won $5,000 for first place in the Michelin bombing competition at Villacoublay Airdrome in France, scoring 12 hits on a 125-by-375 foot target with 15 bombs dropped from 800 meters.[17]

In spite of early examples like Scott's prior to the war, during the opening stages of the First World War bombing was almost always carried out by eye, dropping the small bombs by hand when the conditions looked right. As the use and roles for aircraft increased during the war, the need for better accuracy became pressing. At first this was accomplished by sighting off parts of the aircraft, such as struts and engine cylinders, or drawing lines on the side of the aircraft after test drops on a bombing range. These were useful for low altitudes and stationary targets, but as the nature of the air war expanded, the needs quickly outgrew these solutions as well.[17]

One of the earliest fully developed bombsights to see combat was the German Görtz bombsight, developed for the Gotha heavy bombers. The Görtz used a telescope with a rotating prism at the bottom which was pre-set to an angle read from a table of speed vs. altitude. Similar bombsights were developed in France and England, notably the Michelin and Central Flying School Number Seven bombsight. All of these shared the problem that they had no way to account for windage across the aircraft's path, and required the aircraft to fly directly along the wind line in order to be accurate. Even then, the adjustment for drift in setting the trail was normally estimated using a stopwatch and manually timing the flight of the aircraft over the ground, a time-consuming and error-prone process.[17]

The first successful attack on the windage problem was made by Harry Wimperis, better known for his later role in the development of radar in England. In 1916 he introduced the Drift Sight that added a simple system for directly measuring the wind speed. Prior to the bomb run, the bomber would fly at right angles to the bomb line, and the bomb aimer would line up a metal rod on the sight with the motion of objects on the ground. Using the known airspeed and the measured angle, the wind speed could then be calculated with some degree of accuracy. Simply measuring the speed using this device also adjusted the sights to the proper sighting angles, eliminating the need for separate calculations.[18] A later modification was added to calculate the difference between true and indicated airspeed, which grows with altitude.[18] This version was the Drift Sight Mk. 1A, introduced on the Handley Page O/400 heavy bomber.[19] Variations on the design were common, like the US Estoppey bombsight.

All of these bombsights shared the problem that they were unable to deal with wind in any direction other than along the path of travel. That made them effectively useless against moving targets, like submarines and ships, as these targets would normally maneuver as soon as an attack was spotted, leading the bomber away from the wind line. Additionally, as anti-aircraft artillery grew more effective, they would often pre-sight their guns along the wind line of the targets they were protecting, knowing that attacks would come from those directions. A solution for attacking cross-wind was sorely needed.[17]

Vector bombsights

Calculating the effects of an arbitrary wind on the path of an aircraft was already a well-understood problem in air navigation, one requiring basic vector mathematics. Wimperis was very familiar with these techniques, and would go on to write a seminal introductory text on the topic.[20] The same calculations would work just as well for bomb trajectories, with some minor adjustments to account for the changing velocities as the bombs fell. Even as the Drift Sight was being introduced, Wimperis was working on a new bombsight that helped solve these calculations and allow the effects of wind to be considered no matter the direction of the wind or the bomb run.

The result was the Course Setting Bomb Sight (CSBS), called "the most important bomb sight of the war".[21] Dialling in the values for altitude, airspeed and the speed and direction of the wind rotated and slid various mechanical devices that solved the same vector problem. Once set up, the bomb aimer would watch objects on the ground and compare their path to thin wires on either side of the sight. If there was any sideways motion, the pilot could slip-turn to a new heading in an effort to cancel out the drift. A few attempts were typically all that was needed, at which point the aircraft was flying in the right direction to take it directly over the drop point, with zero sideways velocity. The bomb aimer (or pilot in some aircraft) then sighted through the iron sights to time the drop.[22]

The CSBS was introduced into service in 1917 and quickly replaced earlier sights on aircraft that had room for the large sight. Versions for different speeds, altitudes and bombs were introduced as the war progressed. After the war, the CSBS continued to be the main bombsight in British use, thousands were sold to foreign air forces, and numerous versions were created for production around the world. A number of experimental devices based on a variation of the CSBS were also used, notably the US's Estoppey D-1 sight,[23] developed shortly after the war, and similar versions from many other nations. These "vector bombsights" all shared the basic vector calculator system and drift wires.

As bombers grew and multi-place aircraft became common, it was no longer possible for the pilot and bomb aimer to share the same instrument, and hand signals were no longer visible if the aimer was below in the nose. A variety of solutions using dual optics or similar systems were suggested in the post-war era, but none of these became widely used.[24][25][26] This led to the introduction of the "pilot direction indicator", an electrically-driven pointer which the bomb aimer used to indicate corrections from a remote location in the aircraft.[27]

Vector bombsights remained the standard by most forces well into the Second World War, and was the main sight in British service until 1942.[28] This was in spite of the introduction of newer sighting systems with great advantages over the CSBS, and even newer versions of the CSBS that failed to be used for a variety of reasons. The later versions of the CSBS included adjustments for different bombs, ways to attack moving targets, systems for more easily measuring winds, and a host of other options.

Tachometric bombsights

One of the main problems using vector bombsights was the long straight run needed before dropping the bombs. This was needed so the pilot would have enough time to accurately account for the effects of wind, and get the proper angles set up with some level of accuracy. If anything changed during the bomb run, especially if the aircraft had to maneuver in order to avoid defences, everything had to be set up again. Additionally, the introduction of monoplane bombers made the adjustment of the angles more difficult, because they were not able to slip-turn like their earlier biplane counterparts. They suffered from an effect known as "Dutch roll" that made the more difficult to turn and tended to "hunt" after levelling. This further reduced the time the bomb aimer had to adjust the path.

One solution to this later problem had already been used for some time, the use of some sort of gimbal system to keep the bombsight pointed roughly downward during maneuvering or being blown around by wind gusts. Experiments as early as the 1920s had demonstrated that this could roughly double the accuracy of bombing. The US carried out an active program in this area, including Estoppey sights mounted to weighted gimbals and Sperry Gyroscope's experiments with US versions of the CSBS mounted to what would today be called an inertial platform.[17] These same developments led to the introduction of the first really useful autopilots, which could be used to directly dial in the required path and have the aircraft fly to that heading with no further input. A variety of bombing systems using one or both of these systems were considered throughout the 1920s and 30s.[29]

During the same period, a separate line of development was leading to the first reliable mechanical computers. These could be used to replace a complex table of numbers with a carefully shaped cam-like device, and the manual calculation though a series of gears or slip wheels. Originally limited to fairly simple calculations consisting of additions and subtractions, by the 1930s they had progressed to the point where they were being used to solve differential equations.[30] For bombsight use, such a calculator would allow the bomb aimer to dial in the basic aircraft parameters - speed, altitude, direction, and known atmospheric conditions, density, wind speed and direction - and automatically calculate the proper aim point in a few moments. Some of the traditional inputs, like airspeed and altitude, could be taken directly from the aircraft instruments, eliminating operational errors.

Although these developments were well known within the industry, only the US Army Air Corps and US Navy put any concerted effort into development. During the 1920s, the Navy funded development of the Norden bombsight while the Army funded development of the Sperry O-1.[31] Both systems were generally similar; a bomb sight consisting of a small telescope was mounted on a stabilizing platform to keep the sighting head stable. A separate mechanical computer was used to calculate the aim point. The aim point was fed back to the sight, which automatically rotated the telescope to the right angle and tried to keep the target still in the view. When the bomb aimer sighted through the telescope, he could see any residual drift and relay this to the pilot, or later, feed that information directly into the autopilot. As this process continued, the bombardier was automatically fine-tuning the windage calculations continuously, and thereby greatly increasing their accuracy. For a variety of reasons, the Army dropped their interest in the Sperry, and features from the Sperry and Norden bombsights were folded into new models of the Norden.[32] The Norden then equipped almost all US high-level bombers, most notably the B-17 Flying Fortress. In tests, these bombsights were able to generate fantastic accuracy. In practice, however, operational factors seriously upset them, to the point that pinpoint bombing using the Norden was eventually abandoned.[33]

Although the US put the most effort into development of the tachometric concept, they were also being studied elsewhere. In the UK, work on the Automatic Bomb Sight (ABS) had been carried on since the mid-30s in an effort to replace the CSBS. However, the ABS did not include stabilization of the sighting system, nor the Norden's autopilot system. In testing the ABS proved to be too difficult to use, requiring long bomb runs to allow the computer to "solve" the aim point. When the Bomber Command complained that even the CSBS had too long a run-in to the target, efforts to replace it with the ABS ended. For their needs they developed a new bombsight, the Mk. XIV. The Mk. XIV featured a stabilizing platform and aiming computer, but worked more like the CSBS in overall functionality - the bomb aimer would set the computer to move the sighting system to the proper angle, but the bombsight did not "track" the target or attempt to correct the aircraft path. The advantage of this system was that it was dramatically faster to use, and could be used even while the aircraft was manoeuvring. Facing a lack of production capability, Sperry was contracted to produce the Mk. XIV, calling it the Sperry T-1.[34]

Both the British and Germans would later introduce Norden-like sights of their own. Based at least partially on information about the Norden passed to them through the Duquesne Spy Ring, the Luftwaffe developed the Lotfernrohr 7.[35] The basic mechanism was almost identical to the Norden, but much smaller. In certain applications the Lotfernrohr 7 could be used by a single-crew aircraft, as was the case for the Arado Ar 234, the world's first operational jet bomber. Late in the war the RAF had the need for accurate high-altitude bombing and introduced a stabilized version of the earlier ABS, the hand-built Stabilized Automatic Bomb Sight (SABS). It was produced in such limited numbers that it was at first used only by the famed No. 617 Squadron RAF, The Dambusters.[36]

All of these designs collectively became known as "tachometric sights", "tachometric" referring to the timing mechanisms which counted the rotations of a screw or gear that ran at a specified speed.

Radar bombing and integrated systems

In the pre-WWII era there had been a long debate about the relative merits of daylight versus night-time bombing. At night the bomber is virtually invulnerable (until the introduction of radar) but finding its target was a major problem. In practice, only large targets such as cities could be attacked. During the day the bomber could use its bombsights to attack point targets, but only at the risk of being attacked by enemy fighters and anti-aircraft artillery.

During the early 1930s the debate had been won by the night-bombing supporters, and the RAF and Luftwaffe started construction of large fleets of aircraft dedicated to the night mission, largely as a deterrent force. However, just prior to the war the aircraft grew much larger and were able to carry greatly improved defensive suites, and their higher altitudes and speeds would render them less vulnerable to the defences on the ground. Policy once again changed in favour of daylight attacks against military targets and factories. This proved dangerous in practice, and losses sustained by both forces during daylight raids

In spite of this change, the Luftwaffe continued to put effort into solving the problem of accurate navigation at night. This led to the Battle of the Beams during the opening stages of the war. The RAF returned in force in early 1942 with similar systems of their own, and from that point on, radio navigation systems of increasing accuracy allowed bombing in any weather or operational conditions. The Oboe system, first used operationally in early 1943, offered real-world accuracies on the order of 35 yards, much better than any optical bombsight. The introduction of the British H2S radar further improved the bomber's abilities, allowing direct attack of targets without the need of remote radio transmitters, which had limited range. By 1943 these techniques were in widespread use by both the RAF and USAAF, leading to the H2X and then a series of improved versions like the AN/APQ-13 and AN/APQ-7 used on the Boeing B-29 Superfortress.

These early systems operated independently of any existing optical bombsight, but this presented the problem of having to separately calculate the trajectory of the bomb. In the case of Oboe, these calculations were carried out before the mission at the ground bases. But as daylight visual bombing was still widely used, conversions and adaptations were quickly made to repeat the radar signal in the existing bombsights, allowing the bombsight calculator to solve the radar bombing problem. The AN/APA-47 was used to combine the output from the AN/APQ-7 with the Norden, allowing the bomb aimer to easily check both images to compare the aim point.[37]

Analysis of the results of bombing attacks carried out using radio navigation or radar techniques demonstrated accuracy was essentially equal for the two systems - night time attacks with Oboe were able to hit targets that the Norden could not. With the exception of operational considerations - limited resolution of the radar and limited range of the navigation systems - the need for visual bombsights quickly disappeared. Designs of the late-war era, like the Boeing B-47 Stratojet and English Electric Canberra retained their optical systems, but these were often considered secondary to the radar and radio systems, and in the case of the Canberra, only existed due to delays in the radar system becoming available.

Postwar developments

The strategic bombing role was following an evolution over time to ever-higher, ever-faster, ever-longer-ranged missions with ever-more-powerful weapons. Although the tachometric bombsights provided most of the features needed for accurate bombing, they were complex, slow, and limited to straight-line and level attacks. In 1946 the US Army Air Force asked the Army Air Forces Scientific Advisory Group to study the problem of bombing from jet aircraft that would soon be entering service. They concluded that at speeds over 1,000 knots, optical systems would be useless as they would not give the bomb aimer enough time to find the target given the limited sighting ranges they offered, ranges that would be the same or even shorter as the range of the bomb being dropped at high speed.[37]

At the ranges being considered, radio navigation systems would not be able to offer both the range and the accuracy needed. This demanded radar bombing systems, but existing examples did not offer anywhere near the performance needed. At the stratospheric altitudes and long ranges being considered, the radar antenna would need to be very large to offer the required resolution, yet this ran counter for the need to develop an antenna that was as small as possible in order to reduce drag. They also pointed out that many targets would not show up directly on the radar, so the bombsight would need the ability to drop at points relative to some landmark that did appear, the so-called "offset aiming points". Finally, the group noted that many of the functions in such a system would overlap formerly separate tools like the navigation systems. They proposed a single system that would offer mapping, navigation, autopilot and bomb aiming, thereby reducing complexity, and especially the needed space. Such a machine first emerged in the form of the AN/APQ-24, and later the "K-System", the AN/APA-59.[37]

Through the 1950s and 1960s, radar bombing of this sort was common and the accuracy of the systems were limited to what was needed to support attacks by nuclear weapons - a Circular Probable Error (CEP) of about 3,000 feet was considered adequate.[37] As mission range extended to thousands of miles, bombers started incorporating inertial guidance and star trackers to allow accurate navigation when far from land. These systems quickly improved in accuracy, and eventually became accurate enough to handle the bomb dropping without the need for a separate bombsight. This was the case for the 1,500 foot accuracy demanded of the B-70 Valkyrie.[38]

Modern systems

During the Cold War the weapon of choice was a nuclear one, and accuracy needs were limited. Development of tactical bombing systems, notably the ability to attack point targets with conventional weapons that had been the original goal of the Norden, was not considered seriously. Thus when the US entered the Vietnam War, their weapon of choice was the Douglas A-26 Invader equipped with the Norden. Such a solution was inadequate.

At the same time, the ever-increasing power levels of new jet engines led to fighter aircraft with bomb loads similar to heavy bombers of a generation earlier. This generated demand for a new generation of greatly improved bombsights that could be used by a single-crew aircraft and employed in fighter-like tactics, whether high-level, low-level, in a dive towards the target, or during hard maneuvering. A specialist capability for toss bombing also developed in order to allow aircraft to escape the blast radius of their own nuclear weapons, something that required only middling accuracy but a very different trajectory that initially required a dedicated bombsight.

As electronics improved, these systems were able to be combined together, and then eventually with systems for aiming other weapons. They may be controlled by the pilot directly and provide information through the heads-up display or a video display on the instrument panel. The definition of bombsight is becoming blurred as "smart" bombs with in-flight guidance, such as laser-guided bombs or those using GPS replace "dumb" gravity bombs.

See also

References

  1. ^ a b c See diagrams, Torrey pg. 70
  2. ^ a b Fire Control 1958.
  3. ^ a b Fire Control 1958, p. 23D2.
  4. ^ Fire Control 1958, p. 23D3.
  5. ^ a b Bombing 1944.
  6. ^ Bombing 1944, p. 10.
  7. ^ Ordinance 1944, p. 47.
  8. ^ Bombing 1944, p. 39.
  9. ^ Bombing 1944, p. 23.
  10. ^ a b Raymond 1943, p. 119.
  11. ^ Effects 1944, p. 13.
  12. ^ John Correll, "Daylight Precision Bombing", Air Force Magazine, October 2008, pg. 61
  13. ^ "Federal Aviation Regulations, Navigator Flight Test"
  14. ^ "Precision Dead Reckoning Procedure"
  15. ^ "Visual Flight Planning and Procedure"
  16. ^ Fire Control 23D2.
  17. ^ a b c d e Perry 1961, Chapter I.
  18. ^ a b Goulter 1995, p. 27.
  19. ^ The Encyclopedia of Military Aircraft, 2006 Edition, Jackson, Robert ISBN 1-4054-2465-6 Parragon Publishing 2002
  20. ^ Harry Egerton Wimperis, "A Primer of Air Navigation", Van Nostrand, 1920
  21. ^ Goulter 1996, p. 27.
  22. ^ Ian Thirsk, "De Havilland Mosquito: An Illustrated History", MBI Publishing Company, 2006, pg. 68
  23. ^ "Interwar Development of Bombsights", US Air Force Museum, 19 June 2006
  24. ^ "Target Following Bomb Sight", US Patent 1,389,555
  25. ^ "Pilot Direction Instrument and Bomb Dropping Sight for Aircraft", US Patent 1,510,975
  26. ^ "Airplane Bomb Sight", US Patent 1,360,735
  27. ^ Torrey pg. 72
  28. ^ Sir Arthur Travers Harris, "Despatch on war operations, 23rd February, 1942, to 8th May, 1945", Routledge, 1995. See Appendix C, Section VII
  29. ^ Searle 1989, p. 60.
  30. ^ William Irwin, "The Differential Analyser Explained", Auckland Meccano Guild, July 2009
  31. ^ Searle 1989, p. 61.
  32. ^ Searle 1989, p. 63.
  33. ^ Geoffery Perrett, "There's a War to Be Won: The United States Army in World War II", Random House, 1991, pg. 405
  34. ^ Henry Black, "The T-1 Bombsight Story", 26 July 2001
  35. ^ "The Duquesne Spy Ring", FBI
  36. ^ "Royal Air Force Bomber Command 60th Anniversary, Campaign Diary November 1943", Royal Air Force, 6 April 2005
  37. ^ a b c d Perry 1961, Chapter II.
  38. ^ Perry 1961, Chapter VI.

Bibliography